[스터디 노트1] AI 시대의 도전과 데이터 액티비즘
빠띠는 ‘데이터로 사회문제를 해결하는 시민의 데이터 플랫폼’을 구축하기 위해 다양한 공익데이터 활동을 진행하고 있습니다. 이는 여러 파트너와 이해관계자와 협력하여 만들어가야 하는 중요한 작업입니다. 그렇기에 공익을 위한 데이터 활동이 무엇인지, 그리고 새로운 인공지능 서비스가 끊임없이 등장하는 시대에 왜 사회문제와 관련된 데이터를 논의해야 하는지에 대한 심도 있는 논의가 필요합니다.
이러한 취지에서 빠띠는 ‘인공지능 시대, 데이터 액티비즘과 거버넌스'라는 주제로 스터디를 진행하고 있습니다. 이 스터디는 기술과 사회혁신 두 분야에서 연구 및 국제협력 경력을 보유한 김정원 박사의 발제로 총 4회에 걸쳐 진행되며, 데이터와 시민의 역량, 데이터 액티비즘의 개념, 그리고 데이터의 생산, 관리, 공유를 둘러싼 거버넌스 유형 등 국내외 인공지능과 데이터 관련 주요 이슈를 다룹니다.
스터디를 통해 얻은 핵심 내용을 요약하여 더 많은 분들과 나눔으로써 공익데이터 활동에 대한 이해를 넓히고, 사회문제 해결을 위한 데이터 활용의 중요성을 공유하고자 합니다.
네 줄 요약 (데이터 액티비즘 이전에 인공지능과 데이터에 대한 이해 쌓기)
그래프 출처: AI Index Report 2024, Stanford Human-centered AI, 2024
데이터와 알고리즘 편향 문제를 파헤치는 콘텐츠 가이드
거대한 해킹(2019): 2016년 미국 대통령 선거 캠페인과 영국 브렉시트 국민투표 캠페인에서 인공지능과 페이스북 데이터가 활용된 캠브리지 애널리티카 사건을 다룬 다큐멘터리. 페이스북은 약 8천 7백만 명의 이용자 개인 데이터를 동의없이 선거 캠페인 전략 회사인 캠브리지 애널리티카에 넘겨주고, 이 데이터를 분석하여 선거에 개입했다는 의혹을 다루고 있음.
소셜딜레마(2020): 실리콘밸리의 유명 소셜미디어 기업에서 일했던 핵심 인력들이 소셜미디어 알고리즘의 위험성과 해악을 고발하는 내용을 다루고 있음. 광고 수익으로 성장하는 IT 기업이 광고 효과를 높이기 위해 이용자의 정보를 어떻게 추출하고, 행동을 유도하는지 보여줌으로써 알고리즘에 저항해야 한다는 메시지를 전달함.
[케이스 스터디]알고리즘이 대학입시를 결정한다고?!
2020년 코로나19로 영국 대학입시(A-Level)가 취소됨. 대신 모의고사 점수와 내신 성적으로 대학 입시를 대신하기로 결정하는데, 여러 편차를 보정하고 객관성을 보장하기 위해 개별 교사의 판단이 아닌 정부 입시 기관의 자동 알고리즘을 활용함. 그러나 이 과정에서 많은 학생들이 예측 점수보다 낮은 성적을 받아 합격할 것으로 예상한 대학에서 불합격 통보를 받음. 결과에 대한 재심 요청 후 분석 결과, 성적이 하향 조정된 대부분의 학생이 빈곤 지역에 위치한 학교에 재학 중이며, 이들 학교의 과거 대학 입시 결과가 낮았던 것으로 드러남. 반면, 부유한 지역 사립학교 재학생의 점수는 4.7% 상승해 공정성 문제가 제기됨. 최근 3년간 시험 결과 데이터를 반영해 만들어진 알고리즘 계산이 불공정 시비를 불러오자 교육부는 최종 시험결과 통보 후 4일 만에 결정을 취소하고, 결국 각 교사가 제출한 예측 결과를 대입 최종 결과로 인정하기로 함.
관련 내용 더 보기
인공지능 연구의 다양성 부족 문제를 보여주는 그래프: 375편의 인공지능 공정성 관련 연구 논문을 분석한 결과, 연구 저자의 성별과 인종적 배경에 큰 편향이 존재함(전체 저자 중 백인이 64%로 가장 큰 비중을 차지하며 아시아인이 27%, 그 다음 흑인과 히스패닉이 5%, 4$로 나타남)
(출처: AI Fairness research held back by lack of Diversity, March 2023, Nature)
2010년부터 2021년까지 북미 지역 대학의 컴퓨터 과학, 컴퓨터 공학, 정보학과 교수진의 인종 구성 비율을 나타낸 그래프. 소폭 감소하는 추세이긴하나, 전체 교수진의 60%를 백인이 차지하고 있으며, 아시아인이 약 30%를 차지하고 있음. 흑인, 히스패닉, 아메리카 원주민 등 소수 인종의 교수 비율이 매우 낮아 학계의 다양성이 낮음을 보여줌.
(출처: AI Index Report 2023, Stanford Human-centered AI, 2023)
출처: Democratisig AI: Multiple Meanings, Goals and Methods, AIES '23: Proceedings of the 2023, Seger, E. et al
출처: AI법 집행주체는 과기부, 산업진항기관이 윤리감시까지… EU와 한국의 AI 법안 차이점, 힌국일보, 2023년 4월 20일
함께 생각해봐요.
* 정리: 박아영 빠띠 협력가(ahyoung@parti.coop) * 본 내용은 김정원 박사(jungwon@spreadi.org)가 진행한 ‘인공지능 시대, 데이터 액티비즘과 거버넌스' 스터디 내용을 바탕으로 작성되었습니다.